Exercise 56

Find the absolute maximum and absolute minimum values of f on the given interval.

$$
f(t)=\frac{\sqrt{t}}{1+t^{2}}, \quad[0,2]
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(t) & =\frac{d}{d t}\left(\frac{\sqrt{t}}{1+t^{2}}\right) \\
& =\frac{\left[\frac{d}{d t}(\sqrt{t})\right]\left(1+t^{2}\right)-\left[\frac{d}{d t}\left(1+t^{2}\right)\right] \sqrt{t}}{\left(1+t^{2}\right)^{2}} \\
& =\frac{\left(\frac{1}{2} t^{-1 / 2}\right)\left(1+t^{2}\right)-(2 t) \sqrt{t}}{\left(1+t^{2}\right)^{2}} \\
& =\frac{\left(\frac{1}{2 \sqrt{t}}\right)\left(1+t^{2}\right)-(2 t) \sqrt{t}}{\left(1+t^{2}\right)^{2}} \times \frac{2 \sqrt{t}}{2 \sqrt{t}} \\
& =\frac{\left(1+t^{2}\right)-4 t^{2}}{2 \sqrt{t}\left(1+t^{2}\right)^{2}} \\
& =\frac{1-3 t^{2}}{2 \sqrt{t}\left(1+t^{2}\right)^{2}}
\end{aligned}
$$

Set what's in the numerator equal to zero, and set what's in the denominator equal to zero. Solve both equations for t.

$$
\begin{array}{rr}
1-3 t^{2}=0 & 2 \sqrt{t}\left(1+t^{2}\right)^{2}=0 \\
t^{2}=\frac{1}{3} & \sqrt{t}=0 \\
t=-\frac{1}{\sqrt{3}} \text { or } \quad 1+t^{2}=0 \\
\text { or } t=\frac{1}{\sqrt{3}} & t=0 \quad \text { or } \quad t= \pm i
\end{array}
$$

$t=0$ and $t=1 / \sqrt{3}$ are within $[0,2]$, so evaluate f at these values.

$$
\begin{array}{rlr}
f(0) & =\frac{\sqrt{0}}{1+0^{2}}=0 & \text { (absolute minimum) } \\
f\left(\frac{1}{\sqrt{3}}\right) & =\frac{\sqrt{\frac{1}{\sqrt{3}}}}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}=\frac{3^{3 / 4}}{4} \approx 0.569877 & \text { (absolute maximum) }
\end{array}
$$

Now evaluate the function at the other endpoint of the interval.

$$
f(2)=\frac{\sqrt{2}}{1+2^{2}}=\frac{\sqrt{2}}{5} \approx 0.282843
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $[0,2]$. The graph of the function below illustrates these results.

